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Preface 

The goal of this work is to describe how meteorology affects turbulence in the in- 

dex of refraction. Those modeling optical turbulence and attempting to parametrize 

weather's effects will find this work useful. Hopefully, findings will allow forecasters 

to make accurate forecasts of optical turbulence for regions of the atmosphere. 

Jeffrey W. Budai 

m 
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Abstract 

Forecasting optical turbulence is essential for the Air Force's Airborne Laser 

program to optimize placement of aircraft. To find how meteorology affects C%, the 

intensity of turbulence in the index of refraction, case studies of synoptically inter- 

esting times are first chosen. Correlation coefficients are then computed between 

radar measured C\ and meteorological quantities. The potential for mechanically 

turbulent activity, quantified by the variance of radar measured wind speed, is looked 

at. 

In the analysis of this work, six meteorological features were found likely to 

affect C\. Two of the features are directly related to potential refractivity, M, and 

the other four are related to the various other parameters in C^, grouped into one 

called P. 

The two meteorological features associated with affecting potential refractivity, 

and thus C^, are jets and inversions. North of jet core level in the northern hemi- 

sphere, higher values of C\ can be found north of the jet core, with lower values to 

the south. This is a result of synoptic-scale dynamics expressed in the thermal wind 

relationship. The other meteorological feature is temperature inversions. Typically 

higher values of C\ can be found just above inversions, in the warmer side, with 

comparatively lower C\ values underneath. 

The remaining four features are related to meteorological effects on P. The 

first is bands of high C\ occurring within regions of strong vertical wind shear. 

The second feature is high C\ occasionally seen underneath inversions during the 

approach of jets that are associated with gravity wave activity The other two 

meteorological features are tropopause boundaries and trough passage. High values 

of P are seen along the upper and lower tropopause boundaries and during trough 

passage. 

XI 
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ANALYZING THE EFFECTS OF METEOROLOGY ON RADAR 

MEASURED INDEX OF REFRACTION STRUCTURE 

PARAMETER 

/.   Introduction 

1.1    Motivation 

Many new complex weapon systems depend upon being able to monitor, mea- 

sure, or propagate electromagnetic energy through the atmosphere. One such system 

is the Air Force's Airborne Laser (ABL) platform. The ABL is a laser weapon sys- 

tem consisting of a high-powered chemical laser mounted on a Boeing 747 with the 

intent of concentrating its laser beam on ballistic missiles, hoping to destroy them 

(2:4). In order to destroy a missile, the laser needs to have its power concentrated 

on the target for a given amount of time. 

Unfortunately, turbulence in the atmosphere has many adverse effects upon 

laser beams. A beam's energy can spread out, decreasing the concentration of 

power on a target. As a beam spreads out it can interact with itself, causing 

scintillation effects, and also ruin the phase coherence of the beam. Further, a 

beam can be bent off target; and if it does manage to reach its target, it can wander 

about. Fortunately, the ABL will be equipped with adaptive optics technology to 

help compensate for turbulence. However, knowing how the atmosphere affects 

turbulence will be extremely important to planners who will deploy this high-profile, 

advanced weapon system; not only during actual deployments, but during the testing 

and demonstration of ABL capabilities as an effective theater missile defense system. 

The current Presidential Administration has stated its commitment in deploying an 

effective missile defense system. 
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1.2 Problem and Importance 

The ABL program office is working to find a process which will allow planners 

to optimize the placement of the ABL aircraft. The Atmospheric Development 

Branch of the ABL program office is working to develop an Atmospheric Decision 

Aid (ADA) for the ABL. The ADA will be part of the Tactical Decision Aid which 

will integrate weather, intelligence, and operational data to optimize the ABL flight 

path (4).   Operational capability of the ADA is planned for the summer of 2002 (5). 

The Atmospheric Development Branch is interested in parametrizing optical 

turbulence, which is turbulence in the index of refraction for optical wavelengths. 

The variable C^, the index of refraction structure parameter, is used to quantify 

the intensity of turbulence in the index of refraction. The parametrization of C\ 

will be part of a model used to predict optical turbulence in the atmosphere (5). 

Understanding how weather affects C\ is absolutely essential to any parametrization. 

1.3 Purpose and Scope of Work 

The purpose of this work is to find how meteorology affects turbulence in the 

index of refraction. Various weather features, such as jets and troughs, are routinely 

predicted in the atmosphere with fairly good reliability. Knowing how turbulence 

relates to these features, one could generally predict whether turbulence would be 

high or low in a region by its relation to the feature. Understanding where turbulence 

occurs helps in finding out why it occurs, aiding in parametrization of turbulence. 

High-resolution C\ data are available from the White Sands Missile Range 

(WSMR) 50 MHz radar. Being in the VHF of radar frequencies, its turbulence 

data are affected by moisture content of the atmosphere, unlike optical frequencies. 

Above 8 km, especially above the troposphere, moisture's impact on VHF radar 

measured C\ is greatly reduced as air is typically very dry. Therefore, this work 

focuses on heights above 8 km where the WSMR C\ data become very similar to 

optical turbulence C\.    As the ABL aircraft's operational flight level is about 12 
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km (2:7), this is quite acceptable. The top of the radar's range is just over 18 km. 

Features in the radar's turbulence data will be looked at to answer why they are 

there, how long they persist, and how they correlate to atmospheric data. 

The results of this work will be used in the Atmospheric Development Branch's 

parametrization of C%, improving the current model and increasing the accuracy of 

optical turbulence forecasts for ABL planners. Also, the analysis of data in this 

work will be used in the interpretation of C\ data coming from the 50 MHz radar at 

Vandenberg AFB, which will begin taking measurements this year (5). The analysis 

of data in this work will also serve as a guide for forecasters in forecasting optical 

turbulence without the aid of a computer model for C\. 

1.4    Summary of Results 

Two major ways were found in which meteorology affects C2. The index of 

refraction structure parameter, C2, can be expressed as a product of several pa- 

rameters, P, and potential refractivity squared, M2; that is, C2 = PM2 (11:58). 

Potential refractivity is an expression of vertical temperature gradients and several 

meteorological variables, such as pressure and moisture content (12:823). The quan- 

tity P is a product of several parameters used in the description of turbulent flows, 

such as scales of turbulent motion and kinetic energy dissipation rates, which are 

typically difficult to parametrize. More on the theory behind C\ is briefly covered in 

the next chapter. From these two ways in which meteorology affects C2, six major 

features were found in the analysis of this work and are described below. Figure 1 

graphically displays these features. 

Of the six major features found in the analysis of this work, two are directly 

related to potential refractivity, M. The first feature can be seen in Figure 1 

(a). North of jet core level in the northern hemisphere, higher values of C\ can 

be found north of the jet core, with lower values to the south. This is a result 

of synoptic-scale dynamics expressed in the thermal wind relationship.    The other 
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(a) Jet Stream Location 
z4 HighC„2 

HighM 

Low C; 
11 km     Low M 

(b) Temperature Inversions 
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 ► 

(c) Strong Vertical Shear 
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(d) Gravity Wave Activity 
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(e) Tropopause Boundaries 
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(f) Trough Passage 
z, 
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)P>1 

~10km. 

8 km 

P>1 

Figure 1 Highlights of findings. Several meteorological features affect C%, given 
by C\ = PM2. (a) At jet core level in the northern hemisphere, high 
C\ can be found north of a jet core, with lower values to the south, (b) 
C\ is typically higher just above inversions, (c) Bands of high C\ occur 
within regions of strong vertical wind shear, (d) High C\ is occasionally 
seen under inversions during the approach of jets that are associated with 
gravity waves, (e) Along the upper and lower tropopause boundaries, 
values of P are typically greater than one. While between the tropopause 
boundaries, values of P are usually less than one outside of mechanically 
turbulent areas, (f) Large values of P are seen with the passage of 
troughs. Heights are above ground level of the WSMR radar, which is 
1220 m above mean sea level. 
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meteorological feature which affects C\ is temperature inversions. Typically higher 

values of C\ can be found just above inversions, in the warmer side, as a result of 

warmer temperatures increasing potential refractivity, resulting in higher C\. This 

effect is shown in Figure 1 (b). 

The remaining four features are related to meteorological effects on P. The 

first feature is the effect of strong vertical wind shear on P. Bands of high C\ 

occur within regions of strong vertical wind shear. The bands of high C\ cannot be 

accounted for by potential refractivity alone. The second feature is high C\ occa- 

sionally seen underneath inversions during the approach of jets that are associated 

with gravity waves. Gravity waves might be propagating kinetic energy into regions 

underneath inversions, providing turbulent kinetic energy and enhancing C„. The 

other two meteorological features which affect C\ are tropopause boundaries and 

trough passage. High values of P are seen along the upper and lower tropopause 

boundaries and during trough passage. Values of P are usually much greater than 

1 along the boundaries and during passage of troughs. Values of P are typically less 

than one between the tropopause boundaries, and outside of mechanically turbulent 

regions.   Figures 1 (c) through (f) display these meteorological effects on C\. 

1.5    Thesis Organization 

This chapter presented the motivation behind and the importance of this work. 

In the next chapter, several important concepts are defined. The theory of turbu- 

lence in the index of refraction is covered, as well as general information about the 

WSMR 50 MHz radar which measures turbulence. The third chapter describes the 

data sets which are available for this work. After the data sets are described, the 

methodology for solving the problem is covered in the fourth chapter. The fifth 

chapter presents a detailed data analysis, employing the methodology given in the 

fourth chapter. A conclusion follows with a summary of findings and a recommen- 

dation for future work in the field. 
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77.   Subject Background 

This chapter provides a background of important concepts and previous find- 

ings. First, a few characteristics which help define turbulence are mentioned. Next, 

a brief discussion on the theory behind turbulence in the index of refraction is given, 

followed by an overview of the WSMR radar. Lastly, recent work with the WSMR 

radar is covered. 

2.1    Theory 

2.1.1 Turbulence. Brief definitions of turbulence tend to be vague. It is 

best, however, to mention some important characteristics that all turbulent flows 

have. Randomness is one of the most obvious characteristics. This characteristic of 

the irregularity of flows makes statistics a useful way to describe them. Diffusion, the 

rapid rate of mixing of properties in a medium, is another fundamental characteristic 

of turbulence. The last important characteristic of turbulent flows mentioned here 

is dissipation. Energy in turbulent flows is transferred to the internal energy of the 

medium through viscous losses. Without a constant supply of energy, turbulent 

flows die out. All turbulent flows have these characteristics, and more. Turbulence 

in the index of refraction of the atmosphere is of primary importance for this work. 

2.1.2 Index of Refraction Turbulence. Random fluctuations in the index 

of refraction of air have an effect on the propagation of electromagnetic energy. 

Statistics are used to describe the randomness of these fluctuations. Structure 

functions, developed by Kolmogorov, are used to describe random functions and the 

intensity of random fluctuations (11:9). Tatarski's theory (11:27-58) of turbulence 

in the index of refraction is based off of large-scale eddies transferring their energy 

down to smaller scales where eventually viscous losses dissipate energy, transferring 

energy into heat.   Fluctuations in the index of refraction are brought about by this 
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mixing.   The structure function for the index of refraction (11:58) is given by 

Cyi* for lQ<r<L0 

^■Wä'^ (1) 

where C2 is the index of refraction structure parameter. It is a measure of the 

intensity of turbulent fluctuations in the index of refraction, measured a distance r 

apart. C2 has dimensions of [L]~2//3. The outer scale of turbulence, the characteristic 

size of the large-scale eddies, is L0 while the inner scale of turbulence is l0. The 

inner scale of turbulence is where energy is dissipated into heat. The range between 

the two scale sizes is the inertial subrange. 

The index of refraction structure parameter is 

Cl = a2ollfM2 (2) 

where a2 is a universal constant, a' is a ratio of eddy diffusivities, and the potential 

refractivity is 

M      p9e(1M   q   c3dqe fdeyl\ 

K m s2 

with c2 = -7.76 x 1(T3 — , and c3 = 1.55 x 104 K (12:823).    Other symbols 
kg 

have their usual meteorological meanings. 

For this work, C2 is defined more simply as 

C2
n = PM2 (4) 

grouping a2, a', and L0    into one parameter P. 
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2.2 WS MR 50 MHz Radar 

Measurements of C\ used in this work came from the 50 MHz radar at White 

Sands Missile Range, New Mexico. The radar operated there for many years, but 

was recently moved to Vandenberg AFB. At 1220 m above mean sea level, the radar 

was located at 32°24'N, 106°21'W in the Tularosa basin, about 60 km northeast of 

El Paso, Texas (9:82). This site is located between two mountain ridges, the Organ 

Mountains to the west and the Sacramento Mountains to the east. Both mountain 

ridges run north-south.   The climate is a semi-arid, highland desert. 

The radar consists of three fixed coaxial-collinear antennas (9:82). One an- 

tenna points 15° off-zenith towards the north, another 15° off-zenith towards the 

east, and the remaining one points in the vertical. Each antenna measures returned 

back-scattered power for one full minute, completing a full profile of data every 

three minutes. This temporal resolution makes the radar a good source of data for 

comparison with meteorological events. 

A very important fact is the 50 MHz radar is calibrated to measure C\ (9:82). 

The calibrated range is from 10~20 to 10~13 m~2/3. More radar parameters are listed 

in Nastrom and Eaton's work with the 50 MHz radar (9:82). More on the theory 

behind the scattering of electromagnetic energy and its relationship to C2 can be 

read in other works such as Tatarski (11:59-80) and VanZandt (12). 

2.3 Previous Work 

Recent work with the WSMR 50 MHz radar has found that gravity wave 

activity and small-scale turbulence are enhanced when winds are strong near 5.6 km 

(9:81). The greatest enhancements are found between 16 km and 18 km. Nastrom 

and Eaton propose that enhanced turbulence is due to upward propagating gravity 

waves originating in the troposphere during periods of strong winds, and that the 

local static stability and winds are not enough to account for the increased turbulence 

seen. 



www.manaraa.com

In a later paper, they reached several conclusions concerning the variability 

of winds and turbulence seen by the WSMR 50 MHz radar. The hourly variances 

of all three wind components follow a lognormal distribution (10:2147). However, 

the variances of the horizontal winds are mostly anisotropic; that is, small scale 

turbulence in winds has a preferred direction. Also, in the troposphere the mean of 

log(C^) tends to be greater during the summer. In the stratosphere, however, no 

evidence of a seasonal trend in the mean of log(C^) exists. 

Recent work from an Air Force Institute of Technology student involved mul- 

tiple linear regression between optical turbulence and synoptic-scale meteorological 

variables (3:4). The three minute WSMR 50 MHz radar data were averaged into 

6 hour increments and then multiple linear regression was employed. Capt Ha- 

jek found that weak linear relationships exist between some variables and averaged 

log(C^). Variables with the strongest correlation are temperature, bulk Richardson 

number, and the total and ageostrophic wind components. 

This work is follow-on research to Capt Hajek's work done from 1997 to 1998. 
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III.   Data Description 

Three good sets of data are available for analysis. The WSMR 50 MHz 

radar has produced excellent temporal and spatial resolution C\ data, as well as 

horizontal wind speed data. The National Centers for Environmental Prediction 

(NCEP) and National Center for Atmospheric Research (NCAR) have large-scale 

meteorological data available for synoptic analysis. Fine-scale meteorological data, 

for better comparison with the radar data, are available from the Air Force Combat 

Climatology Center (AFCCC). 

3.1    WSMR Radar Data 

Raw data from the WSMR 50 MHz radar have already been processed and the 

following fields are available from 1996: C%, zonal and meridional components of 

wind, and a quality control parameter.   Vertical velocity data are not available. 

Ten months of processed data, in 3 minute increments, are available from 1996. 

There are data gaps, however. March and April have the most data. July, August, 

and September have a few days of missing data; while February, May, June, and 

October are missing more than one half of their days in data. The spatial resolution 

of the processed data is good. In 150 m increments, 112 height ranges are available 

from 2075 m to 18,725 m above ground level. 

The quality control parameter in the processed data was generated from an 

algorithm developed by Weber and Wuertz (13:1) of the National Oceanic and At- 

mospheric Administration. Data were compared to themselves in height and time 

for consistency and a positive integer from 0 to 100 was assigned. The lower the 

number, the better the data. Since data were compared to themselves, errors were 

not always detected by the consistency check (13:2). 

To compare the fine-scale temporal resolution radar data to the comparatively 

coarse meteorological data (discussed later) the radar data needs to be put into a 

10 
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30 minute intervals 
about each 3 hour point 

WPHElil 

Median values after QC 

At = 3 min At = 3hr 

Figure 2 Radar data conversion. For each height, data are taken within a 30 
minute window every 3 hours; quality control is performed on those data, 
then the median of the good data is taken. The final data set has been 
quality controlled and is in 3 hour intervals for comparison with other 
meteorological data. 

slightly different format. Fine-scale meteorological data are available in 3 hour 

increments at 00 UTC, 03 UTC, 06 UTC... To put the radar data into this format, 

a 30 minute window of data, centered on every 3 hour point, is taken. Data with a 

quality control parameter greater than 15 are considered bad data and not included 

in the 30 minute window of data. The median of the remaining set of data is taken 

and that median is assigned to be the representative value at that 3 hour point. For 

reference, the quality control parameter associated with the median value of C\ is 

saved too, as a measure of the quality of C\ at that 3 hour mark. Figure 2 provides 

a picture of the conversion. With good radar data in an appropriate format, large- 

scale meteorological data are needed to overview synoptic situations. NCEP/NCAR 

meteorological data are used for this purpose. 

3.2   NCEP/NCAR Reanalysis Data 

The NCEP/NCAR started a project in 1991 to take global measurements of 

meteorological data, perform quality control, and run a data assimilation system 
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to produce global fields of meteorological data (6:437). After assimilating balloon 

measurements, surface observations, satellite, and other forms of data, many fields 

of standard meteorological quantities were produced. These fields cover all of the 

continental United States and provide an excellent way of observing synoptic features 

in the atmosphere with reliability. 

Temporal resolution of available reanalysis data is in 6 hour increments. Also, 

the data have a horizontal spatial resolution of 2.5° by 2.5°, roughly 280 km by 280 

km. Vertical resolution is 17 pressure levels from 1000 hPa to 10 hPa. While this 

resolution is fair for observing synoptic-scale features, such as long-wave troughs, 

jets, fronts, it is not fine enough for comparisons with the more fine-scale radar data. 

The AFCCC meteorological data do have a good spatial and temporal resolution. 

3.3   AFCCC Meteorological Data 

AFCCC uses a mesoscale dynamical-numerical model to generate high-resolution 

gridded data (1:344). The name of the program that generates the gridded data is 

Advanced Climate Modeling and Environmental Simulations (ACMES). The pro- 

gram uses the NCEP/NCAR reanalysis data, along with earth surface characteristics, 

as initial conditions. It also assimilates surface and upper-air observations into the 

program. The model generated grids of data with a resolution of roughly 11 km 

by 11 km, in 60 sigma-pressure levels over southern New Mexico. A total of 52 

variables came with the ACMES data set. The most important of the 52 are shown 

in Table 1. 

A few quantities are derived from the ACMES data set, which can be seen in 

Table 2. The most important derived quantity is potential refractivity as it has a 

direct impact on C\ according to theory. The calculation of relative vorticity and 

horizontal temperature advection does not account for curvature of the earth. The 

effect of curvature on these calculations is negligible at the latitude of WSMR. 
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Table 1     Important ACMES variables. 
Variable Description 

Ht Terrain height above mean sea level 
u Zonal wind speed 
V Meridional wind speed 
T Temperature 
T Virtual Temperature 
9 Potential temperature 

q Specific humidity 
R* Bulk-Richardson number (BRN) 
N2 Brunt-Väisälä frequency squared 

Total vertical shear 
IfduV     (dv\2 

\\Tz)   +{d-z) 

Table 2     Derived ACMES variables. 
Derived Quantity Description 

V 90 

c2 = -7.76 x 10" 

-V- VT 
dv     du 
dx     dy 

3T      2 dzT 
jK m s2 

c3 = 1.55 x 10 

Horizontal temperature advection 

Relative vorticity 

Potential refractivity 
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At = 3hr At = 3hr 

Figure 3 ACMES data conversion. For comparison with radar data, ACMES 
data are converted from sigma-pressure coordinates to height coordinates. 
The closest horizontal grid point to WSMR (2.65 km away) is used for 
vertical profiles. 

For comparison with the radar data, the ACMES data need to be converted 

from sigma-pressure coordinates to height coordinates: 112 height ranges in 150 m 

increments starting from 2075 m above ground level. Since pressure is recorded on 

each sigma surface, all variables are logarithmically interpolated to pressure coordi- 

nates in 20 hPa increments. After interpolation to pressure coordinates, the hypso- 

metric equation is employed to convert to geopotential height coordinates, based off 

of mean temperatures in layers. Geopotential heights are converted to geometric 

ones using the Smithsonian Meteorological Tables (8:217-219) and the appropriate 

equation therein. The closest horizontal grid point to WSMR, 2.65 km away, is 

used for vertical profiles of data. Horizontal interpolation is not done as the grid 

spacing is roughly 11 km and such interpolation makes little difference in the vertical 

profiles.   Figure 3 provides a picture of the conversion. 

With three good data sets available, the next chapter describes the methodol- 

ogy for finding how meteorology affects C\. 
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IV.   Research Methodology 

To find how meteorology affects C%, case studies of synoptically interesting 

times are chosen. Correlation coefficients are computed between radar measured 

variables and meteorological quantities to see how they relate to each other during 

each case study. The potential for mechanically turbulent activity and its effect on 

C\ is looked at too. Mechanical turbulence is quantified by the calculation of the 

variance of radar measured wind speeds. Each of the methods just mentioned are 

explained in more depth below. 

4-1    Case Studies 

To capture different synoptic situations, and how they affect C%, case studies 

are chosen in the springtime to correspond to times when the polar jet is active 

in the region of the WSMR radar. The dynamics associated with the polar jet 

make for an exciting time with meteorological quantities changing. On a synoptic 

scale, for instance, jets and their associated wind shears have an impact on horizontal 

temperature gradients and might impact C\ in a predictable way. Three case studies 

in April 1996 are looked at. The first two case studies are each 7 days long, and the 

last is 6 days. The length of the case studies is long enough to capture the approach 

of jets, their associated features, and their departure. To see how meteorological 

quantities associated with synoptic features relate to C^, correlation coefficients are 

used. 

4-2    Correlation Coefficients 

Having vertical profiles of data over time, correlation coefficients are an ideal 

way to see how quantities relate. The radar data and meteorological quantities 

over the whole of the case studies are from fairly stationary processes. There are 

broad fluctuations in values during the case studies, but generally the means of the 
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quantities do not continually grow or decrease over time. Radar C\ varies so wildly 

over short periods of time, by several orders of magnitude, that the logarithm of C\ 

is used when computing all correlation coefficients. Taking the log of C\ stabilizes 

its variance. 

Correlation coefficients between log(C^) and ACMES variables are computed at 

constant heights. That is, for each height over the entire case study, one correlation 

coefficient value of lag 0 is computed. Once all of the coefficients are computed, they 

are plotted in the fashion shown in Figure 4. Correlation coefficients are computed 

with lag, m, of 0 from the equation 

.N-m Ejv —lit, 

. ,    (xi-x)(yi+m-y) 
rm[x, y) =     ,       N_m^ (5) 

where 

x 
N-m N 
EXj _ _    ^-v    __Vi___ 

(N-m) V~   ^   (N-m) 
i=l    v                  > i=m+l v                  ' 

After quality control of the radar data, after inconsistent data are removed, 

gaps are filled in by linear interpolation and extrapolation in time. This does affect 

correlation coefficient values, but only in a minor way. It was found that the general 

pattern of correlation coefficients plotted with height changed very little when heavy 

interpolation was performed, compared to very little interpolation. Values of the 

coefficients would change by an amount usually less than 0.05 and the overall shape 

of the curves would remain the same. Filling in data gaps by linear interpolation 

and extrapolation in time has little effect on the coefficients and the shapes of the 

curves with height. The shapes of the curves and the relative strengths of local 

minima and maxima are important to the analysis, not precise numerical values at 

each height. 
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Height Z| 

r0(
x>y) 

Figure 4     Correlation coefficient computation.   For each height, correlation coeffi- 
cients are computed over the entire case study period. 

4-3    Wind Speed Variance 

To identify regions of possible mechanical turbulence, and how they might af- 

fect C%, variance of wind speeds is used as an indicator of possible mechanically 

turbulent activity. To illustrate the concept, imagine flying an airplane in an en- 

vironment with a sustained wind speed without speed variance. If the wind speed 

becomes randomly modulated from turbulent activity, the variance of the speed will 

increase. As the variance of the wind speed increases more, the plane becomes tossed 

about from the turbulent motion. High speed variance does not imply turbulence, 

though. Simple wave motion has speed variance, but might not have the defining 

characteristics of turbulent flows. Though high variance of wind speeds does not 

imply mechanical turbulence, high wind speed variance is used as an indicator of 

potentially turbulent activity. 

Variance of the radar measured wind speeds is calculated over 30 minute inter- 

vals, at every three hour mark corresponding to the times of the ACMES variables 

and 30 minute medians of radar C\. Quality control was less stringent to allow 

for more variability from the observed radar data. Obviously bad data were still 

removed.    Total wind speed variance is the quantity used to identify possibly me- 
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chanically turbulent areas, which is given by 

where 

and 

si + si) (6) 

S«-Z^jv-1 5"     ^   N-\ 

AT AT 
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V.   Data Analysis 

Three case studies are chosen from the month of April 1996. Radar data are 

available in long, continuous blocks with few quality control gaps. The polar and 

subtropical jets are active throughout the month. The individual case studies are 

chosen by jet position in relation to the WSMR radar and features which appear in 

the radar C\ data. 

The case studies are analyzed below, one at a time. Each case study begins 

with a general overview of the synoptic situation and a description of the interesting 

features seen in the radar data. Each analysis is broken into two layers: the upper 

troposphere to lower tropopause, and the mid-tropopause to lower stratosphere. The 

tropopause is defined here not as a single height, but a layer from where static sta- 

bility rapidly increases and temperature remains fairly constant to the stratosphere, 

where static stability rapidly increases again and temperature begins to increase with 

height.   The tropopause layer is usually from 11 km to 17 km. 

5.1    Case Study 1 

5.1.1 Overview. The first case study is chosen for two significant features 

which appear in a plot of WSMR \og(C%) with height from 00 UTC 17 April 1996 

to 00 UTC 24 April 1996. These two features can be seen in Figure 5. The first 

feature is a series of high and low log(C^) values occurring at about 12 km. This 

pattern is significant as it occurs at the proposed flight level of the ABL aircraft 

(2:7). The other feature is the band of high log(C^) values occurring at roughly 17 

km throughout the period. 

An initial inspection of the synoptic situation for this case study is best seen at 

jet level, close to 200 hPa. In Figures 6 and 7, the polar jet can be seen undulating 

north and south of the WSMR radar during the week. Superimposing 2-D horizontal 

wind speed onto the plot of log(C^), seen in Figure 8, shows the pattern of high and 
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17APR      18APR      19APR     20APR     21 APR      22APR     23APR 
1996 

Figure 5 Case study 1 WSMR log(C^). Two features of interest in this case study 
are denoted by dashed lines: the series of high and low log(C^) values 
between 11 km and 13 km, and the band of high log(C^) at roughly 17 
km. 
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low log(C^) values occurring at or occasionally near the region of maximum wind 

speeds, at about 11 km. The 17 km band feature resides just at and underneath 

the stratospheric inversion, shown in the superposition of temperature on the plot 

of log(C^) in Figure 9. These two synoptic-scale features, the jet position and 

stratospheric inversion, seem to be associated with the patterns of log(C^). It is 

logical then to analyze these log(C^) features based on height. The analysis below 

is broken into two general regions: the upper troposphere to lower tropopause, and 

the mid-tropopause to lower stratosphere. 

5.1.2 Upper Troposphere to Lower Tropopause. For this case study, the 

upper troposphere to lower tropopause region is from 8 km to 13 km. These are 

heights where the lower tropopause boundary generally exists, heights in which the 

polar jet core occurs. 

To look more closely at how the position of a jet core and the pattern of log(C^) 

at 12 km might be related, the horizontal position of the closest jet core with respect 

to WSMR is denoted in Figure 10. In the figure, it seems that high log(C^) generally 

occurs when the closest jet core is to the south, and low log(C^) occurs when the 

closest jet core is to the north. Also, the vertical gradient of potential temperature 

is generally weak in areas of low log(C^) and high in areas of high log(C^). The 

proximity and relative position of the jet core affecting C\ can be explained by the 

thermal wind relationship. 

The high and low log(C^) pattern is likely a result of the relationship between 

the vertical shear of wind and horizontal gradients of temperature, expressed in the 

thermal wind relationship (see Appendix A). North of jet core level in the northern 

hemisphere, on the lower pressure side, the lower tropopause boundary is lower and 

static stability is higher. Potential refractivity is generally higher, and thus C\ 

is higher. At jet level log(C^) is lower to the south of the jet core as the lower 

tropopause boundary is higher and static stability and potential refractivity are 
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Figure 6 Case study 1 NCEP/NCAR 200 hPa analysis. The polar (P) and sub- 
tropical (S) jet cores are denoted by solid line and the WSMR radar by 
dot. Geopotential height is in meters MSL and wind barbs are in meters 
per second. 
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Figure 7 Case study 1 NCEP/NCAR 200 hPa analysis. The polar jet core is 
denoted by solid line and the WSMR radar by dot. Geopotential height 
is in meters MSL and wind barbs are in meters per second. 
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17APR      18APR      19APR     20APR     21 APR     22APR     23APR 
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Figure 8     Case study 1 WSMR log(C^) and ACMES 2-D horizontal wind speed 
(m/s). 
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17APR      18APR      19APR     20APR     21 APR      22APR     23APR 
1996 

Figure 9     Case study 1 WSMR log(C^) and ACMES temperature (°C).   The base 
of the stratospheric inversion is denoted by dashed line. 

25 



www.manaraa.com

17APR  18APR  19APR  20APR  21APR  22APR  23APR 
1996 

WSMR   north   of jet WSMR   south   of jet Jet  overhead 

Figure 10 Case study 1 WSMR log(C^), ACMES potential temperature (K), and 
closest jet position. Closest jet position is with respect to the WSMR 
radar and denoted on the figure at about 200 hPa. At 11 km, high 
log(C^) generally occurs when the jet core is to the south, and low 
log(C^) occurs when the jet core is to the north. 
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lower. This relationship is apparent in Figure 11 (a) which shows the correlation 

coefficient between log(C2) and log(M2), the log of potential refractivity squared, 

computed for each height over the entire period. From 8 km to 13 km the correlation 

coefficient is roughly 0.6, with a peak of about 0.8 at 12 km. A good relationship 

between log(C^) and log(M2) exists in the region of the jet core. 

Similarly, vertical gradients of temperature and potential temperature have a 

good correlation with log(C2) in this layer, not shown in the figure. This is log- 

ical as potential refractivity is a function of these vertical temperature gradients. 

Other correlation coefficients computed between log(C2) and thermodynamic vari- 

ables show some interesting features with height. But in general, most correlation 

coefficients are small, between -0.4 and 0.4. Other correlation coefficients for this 

case study can be seen in Figure 12. 

Summarizing the findings from this jet-level layer, there is good linear depen- 

dence between log(C2) and log(M2), the log of potential refractivity squared. The 

relationship is best at about 12 km, just above the average height of the jet core, 

with a correlation coefficient value of about 0.8. Similar correlation coefficient val- 

ues occur with log(C2) and other variables that are functions of vertical temperature 

gradients, such as the Brunt-Väisälä frequency. Synoptic-scale dynamics, explained 

with the thermal wind relationship, appears to play a strong and predictable role in 

affecting log(C2) in the upper troposphere and lower tropopause when a jet core is 

present. 

5.1.3 Mid- Tropopause to Lower Stratosphere. The remaining heights in this 

case study, 13 km to just over 18 km, define the mid-tropopause to lower stratosphere 

layer. As seen in Figure 13 (a), the lower stratosphere boundary begins roughly 

between 16 km and 17 km, where the dominant feature of this atmospheric layer 

resides. The high log(C2) band typically resides above the stratospheric boundary, 

in the warmer region, but from 12 UTC 17 April 1996 to 12 UTC 19 April 1996 there 
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Figure 11 Case study 1 correlation coefficients of lag 0. Coefficients are computed 
at constant height between WSMR log(C^) and variables at top of each 
graph. 
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Figure 12 Case study 1 correlation coefficients of lag 0. Coefficients are computed 
at constant height between WSMR log(C^) and variables at top of each 
graph. 
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is high log(C^) below the boundary in the colder tropopause region. The part of 

the band in the stratospheric side can best be explained by the effect a temperature 

inversion has on potential refractivity. 

Potential refractivity, being a function of vertical temperature gradients, is 

higher above the inversion (in the warm layer) and lower below the inversion (in 

the cold layer), assuming moisture is negligible or the same in both layers. A 

detailed description comparing C2 between layers can be referenced in Appendix B. 

Assuming roughly equal values of P in C2 = PM2, higher values of G2
n would be 

located in the stratospheric side of the inversion, with comparatively lower C\ values 

underneath. The effect of potential refractivity on the high C2
n band can be seen 

in Figure 13 (b). But this does not explain the high C2
n below the stratospheric 

boundary from 12 UTC 17 April 1996 to 12 UTC 19 April 1996, as M2 is only 

high above the inversion. The approach of the polar jet during these times and 

mechanical turbulence might account for the higher C\ below the inversion. 

Figure 6 shows the polar jet approaching and departing the WSMR radar from 

12 UTC 17 April 1996 to 12 UTC 18 April 1996. During these times log(C^) is high 

underneath the stratospheric inversion, seen in Figure 14 (a). These high log(C^) 

values also occur where the Brunt-Väisälä frequency squared is low, as shown in 

Figure 14 (b). Low Brunt-Väisälä frequency regions favor buoyant instability, com- 

pared to higher Brunt-Väisälä frequency regions, as lower Brunt-Väisälä frequencies 

imply lower buoyant Richardson numbers and a greater likelihood for mechanical 

turbulence. Possible energy sources for mechanical turbulence are regions which 

have high Reynolds stress or high shear (7:436). Appendix C shows how these two 

sources are related to turbulent kinetic energy. Figure 14 (c) shows that ACMES 

total vertical shear, \f{^f + (ff )2, roughly occurs in the regions of high log(C2) 

underneath the inversion. But looking at the fine-scale WSMR radar data in Figure 

15 shows that the band of high log(C^) underneath the inversion at 15 km, Figure 15 

(a), occurs exactly where there is high total vertical shear, Figure 15 (c), calculated 
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Figure 13 Case study 1 WSMR log(C^) and ACMES log of potential refractivity 
squared in the mid-tropopause to lower stratosphere. From 17 April to 
19 April, high log(C^) exists below the stratosphere (a), where log(M2) 
is low compared to other times (b).   Temperature (°C) is contoured. 
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from the radar measured wind speeds. The approach of the polar jet and its strong 

vertical wind shears at 15 km seems to be providing a source of turbulent kinetic 

energy in the region, increasing C\. 

It is interesting to find high G\ under the inversion occurring in a low Brunt- 

Väisälä frequency squared environment, compared to values above the inversion. In 

the upper troposphere to lower tropopause region discussed earlier, high C\ generally 

occurred in high potential refractivity environments, where Brunt-Väisälä frequency 

squared was higher. This apparent conflict can be explained as there are two 

different forms of turbulence at work. Mechanical turbulence seems to be affecting 

C\ just below the stratospheric inversion, while microscale turbulence parametrized 

by potential refractivity is affecting C% more strongly near the lower tropopause 

boundary and above the stratospheric inversion. This explains why log(C^) is not 

correlating well with the log of potential refractivity squared and the Brunt-Väisälä 

frequency squared in this upper layer, though total vertical shear seen in Figure 11 

(d) does correlate more strongly than before. 

The effect of mechanical turbulence on C\ is parametrized in P. Values of 

log(P), calculated by subtracting ACMES log(M2) data from the WSMR log(C^) 

data, are shown in Figure 16. High values of P can be seen beneath the stratospheric 

inversion from 17 April to 19 April 1996 in the region of higher total vertical shear. 

Perhaps P is greater there as the amount of turbulent kinetic energy available for 

cascade through the inertial subrange is greater. Above the inversion during these 

times, P is lower, though still greater than 1. 

Other features in Figure 16 show that along the lower stratospheric boundary 

P is typically greater than 1. In the mid-tropopause, P is typically less than 1, 

outside of mechanically turbulent areas. At 12 km, P is typically greater than 1 

when the WSMR radar is north of a jet, and less than 1 then the radar is south of 

a jet. Perhaps these features are related to the outer scale of turbulence, LQ, being 

affected by increased static stability. 
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Figure 14 Case study 1 upper-level WSMR log(C%) and ACMES data, (a) High 
log(C^) occurs under the inversion. Temperature (°C) is contoured, (b) 
Under the inversion, high log(C^) occurs where Brunt-Väisälä frequency 
squared is low. Brunt-Väisälä frequency squared (1/s2), contoured, is 
multiplied by 105.   (c)   Total vertical shear (1/s) is multiplied by 104. 
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Figure 15 Case study 1 fine-scale WSMR radar data, (a) Radar log(C^) data are 
averaged in 30 minute intervals every 3 minutes. Two log(C^) bands 
appear, (b) The lower band at 15 km resides atop a region of high 
radar measured wind speeds (m/s). (c) The lower band of high log(C^) 
is in a region of strong vertical shear (1/s). White blocks are missing 
data that have been quality controlled. 
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Figure 16 Case study 1 calculated log(P). Values of log(P), calculated by sub- 
tracting ACMES log(M2) data from the WSMR log(C£) data, show 
higher values of P along the lower stratospheric boundary at about 18 
km. In the mid-tropopause, from 14 km to 16 km, P is typically less 
than 1 outside of mechanically turbulent areas. 
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Lastly, a few remarks about some other atmospheric variables and their corre- 

lation to log(C^). Temperature and potential temperature correlate stronger with 

log(C^) than they did in the lower levels, as seen in Figures 12 (c) and (d). Corre- 

lation coefficient values are around -0.5 from 15 km to 17 km, with peaks of about 

-0.6. The reason for this is that high values of C\ reside just above the base of the 

stratospheric inversion in the coldest part of the inversion, and because high values 

of C\ exist beneath the base of the inversion, also in a cold region, where mechanical 

turbulence seems to be increasing G\. This is easily seen in Figure 9 from 15 km to 

17 km. The relationship between temperature and C\ seen in the mid-tropopause 

to lower stratosphere layer is likely not from a simple, intrinsic relationship between 

the two, but from general weather patterns associated with features in this layer. 

5.1.4    Summary. For this case study, there is good linear dependence 

between log(C^) and the log of potential refractivity squared in the lower levels from 

8 km to 13 km. The relationship is best just above the average height of the jet core, 

with a correlation coefficient value of about 0.8. The relationship dwindles above 

12 km. The series of high and low log(C^) values at 12 km during the period of the 

case study can be explained with the thermal wind relationship. The position of the 

closest jet core with its associated vertical wind shears affects horizontal temperature 

gradients, which in turn affect potential refractivity and thus C\. Synoptic-scale 

dynamics plays a strong and predictable role in affecting log(C^) when a jet core is 

present in both time and space. 

From the mid-tropopause to the lower stratosphere, high values of log(C^) 

occur above the stratospheric inversion where potential refractivity increases because 

static stability increases in the stratosphere. High values of log(C^) also occur 

beneath the stratospheric inversion where turbulent kinetic energy is available from 

strong vertical wind shears associated with the approach and departure of the polar 

jet.    Potential refractivity alone is not enough to account for the higher log(C^) 
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values beneath the inversion.   This is partly evidenced by the increased correlation 

of log(C^) to total vertical shear in the upper levels. 

5.2    Case Study 2 

5.2.1 Overview. Case study 2 is chosen for two banded features and a patch 

of high G\ which appear in the data. Unlike the pattern of high and low log(C^) 

values seen in case study 1, case study 2 has a fairly uniform band of log(C^) between 

9 km and 12 km. Figure 17 shows log(C^) for this case study, which runs from 00 

UTC 8 April 1996 to 00 UTC 15 April 1996. The other banded feature rises from 

13 km to 18 km over the period. These bands are positioned similar to those in 

seen in case study 1. The remaining feature of interest is the patch of high log(C^) 

centered at 15 km on 00 UTC 14 April, appearing underneath the upper level band. 

Again looking at 200 hPa for a general overview of the synoptic situation, 

Figures 18 and 19 show that a jet core does not repeatedly pass over the WSMR 

radar as with case study 1. For the entire period of this case study, the WSMR radar 

lies between the subtropical jet to the south and the polar jet to the north, though 

at times they come close. This might affect the strength of linear dependence of 

log(C^) with the log of potential refractivity squared. 

Just as with case study 1, the lower band of high log(C^) rests near a region of 

maximum wind speeds, as seen in Figure 20. In Figure 21 the upper band of high 

log(C^) resides near the stratospheric inversion, similar to case study 1. Keeping the 

same height ranges used in the analysis of the first case study, the upper troposphere 

to lower tropopause region is discussed first. 

5.2.2 Upper Troposphere to Lower Tropopause. The lower band of high 

log(C^) resides at the lower tropopause boundary where static stability, and thus 

potential refractivity, generally increases. Correlation coefficients of log(C^) with 

the log of potential refractivity squared are shown in Figure 22 (a).   Typical values 
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10APR 1APR      12APR      13APR      14APR 

Figure 17 Case study 2 WSMR log(C^). Significant features in this case study- 
are denoted by dashed line: the high log(C^) band between 9 km and 
12 km, the upper band of high log(C^) from 13 km to 18 km, and the 
high log(C^) centered at 15 km on 00 UTC 14 April 1996. 
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Figure 18 Case study 2 NCEP/NCAR 200 hPa analysis. The polar (P) and 
subtropical (S) jet cores are denoted by solid line and the WSMR radar 
by dot. Geopotential height is in meters MSL and wind barbs are in 
meters per second. 
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Figure 19 Case study 2 NCEP/NCAR 200 hPa analysis. The polar (P) and 
subtropical (S) jet cores are denoted by solid line and the WSMR radar 
by dot. Geopotential height is in meters MSL and wind barbs are in 
meters per second. 
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Figure 20     Case study 2 WSMR log(C£) and ACMES 2-D horizontal wind speed 
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Figure 21     Case study 2 WSMR log(C£) and ACMES temperature (°C). The base 
of the stratospheric inversion is denoted by dashed line. 
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in this layer are just under 0.4, with a minimum value close to 0 and a maximum of 

0.6. The linear dependence of log(C^) with log(M2) is weaker between the polar and 

subtropical jets. In case study 1, the linear dependence was higher, but proximity 

to the polar jet during that case study was closer and for longer periods of time. A 

similar pattern with correlation coefficients occurs with the Brunt-Väisälä frequency 

squared, seen in Figure 22 (b). 

An interesting pattern occurs with the correlation coefficients of log(C^) with 

temperature. In Figure 23 (c) the coefficients underneath 10.5 km are positive with 

values of about 0.5, and above they are negative values of about -0.5. The reason 

for this is a patch of higher temperatures north of the subtropical jet sweeping across 

New Mexico during the case study. This is seen in Figure 24. As the upper-level 

warm air passes through New Mexico from 00 UTC 11 April 1996 to 12 UTC 12 April 

1996 at the 200 hPa level, the lower tropopause boundary drops and C% is less than 

in the high C\ band associated with the boundary. The pattern in the correlation 

coefficients is not due to a simple, intrinsic relationship between C% and temperature 

alone. Correlation coefficients calculated at constant heights throughout the entire 

time period show this relationship as the lower tropopause boundary shifts with 

height and the upper-level warm air shifts with the passage of the subtropical jet. 

This is more easily seen with the realizations of log(C^) and temperature in Figures 

25 (c) and (d). A similar pattern with correlation coefficients occurs with the zonal 

and meridional components of wind, seen in Figures 23 (a) and (b). Most likely the 

proximity of the jets and the dynamics associated with winds and temperatures are 

the reasons for these patterns. 

5.2.3 Mid- Tropopause to Lower Stratosphere. In this layer the linear depen- 

dence of log(C^) with the log of potential refractivity squared is very weak, as seen in 

Figure 22 (a). This is similar to case study 1. Unlike case study 1 though, the rela- 

tionship between log(C^) and temperature disappears. The correlation coefficients 

are mostly between -0.2 and 0.2 for all heights, seen in Figure 23 (c).    However, 
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Figure 22 Case study 2 correlation coefficients of lag 0. Coefficients are computed 
at constant height between WSMR log(C^) and variables at top of each 
graph. 
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Figure 23 Case study 2 correlation coefficients of lag 0. Coefficients are computed 
at constant height between WSMR log(C^) and variables at top of each 
graph. 
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Figure 24 Case study 2 NCEP/NCAR 200 hPa temperature analysis. Tempera- 
tures (°C), shaded, are shown from 00 UTC 11 April 1996 to 12 UTC 
12 April 1996. 2-D wind speeds (m/s) are contoured. The four panels 
show the passage of warm air, north of the subtropical jet. 
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Figure 25 Case study 2 realizations of WSMR log(C^) and ACMES specific hu- 
midity and temperature. (a) and (b) Specific humidity (kg/kg) is 
multiplied by 106 and denoted with black circles, (c) and (d) Tem- 
perature (°C) is denoted with black circles, (a) through (d) show the 
relationship between variables at different heights and how those rela- 
tionships affect correlation coefficients. log(C^) is represented by white, 
open circles in all plots. 
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Figure 26 Case study 2 WSMR log(C^) and ACMES specific humidity. Specific 
humidity (kg/kg) is multiplied by 106. Specific humidity is higher in 
the lower stratosphere compared to the upper tropopause. 

with this case study a much stronger linear relationship exists between log(C^) and 

the zonal component of wind, with values exceeding 0.7 near 17 km. This can be 

seen in Figure 23 (a). This relationship and the relationship between log(C^) and 

specific humidity, seen in Figure 23 (f), might be due to the proximity of jets (and 

thus the stratosphere in this layer) and the dynamics and general features seen with 

them. For instance, in this case study the stratospheric air is more humid than the 

air along the upper tropopause boundary, as seen in Figure 26. One would expect 

high C% associated with low specific humidity, thus a negative correlation coefficient 

in the upper levels. This is more easily seen in the realizations shown in Figures 

25 (a) and (b). Again, these patterns in the correlation coefficients with height are 

probably not due to simple, intrinsic relationships between the variables; but rather 

to dynamics and general weather patterns associated with features in this layer. 

The patch of high log(C*) centered at 15 km on 00 UTC 14 April 1996 rests 

underneath the stratospheric inversion.     Just as with case study 1, this patch of 
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high log(C^) occurs during the approach of the polar jet. The patch of high log(C^) 

can be seen more closely in Figure 27 (a). As with the high log(C^) seen under 

the stratospheric inversion in case study 1, the log of potential refractivity squared 

does not seem to account for this pattern. In Figure 28, high values of log(C^) 

occasionally occur in weak log(M2) regions, compared to lower log(C^) regions with 

higher log(M2). It is likely the parameters embedded in P, where C2 = PM2, 

are different in these regions. To look at what could affect P, the potential for 

mechanical turbulence is looked at. 

Looking at the total variance of horizontal wind speed as potential indicator 

of mechanical turbulence, Figures 27 (a) and (b) show that the high log(C^) patch 

occurs exactly where there is high variance in the radar measured wind speeds. 

Possible sources for this mechanical turbulence could be from shear, which provides 

energy for turbulent activity, or from gravity wave activity. 

Looking first at shear, Figure 19 shows the polar jet had been moving towards 

WSMR steadily since 00 UTC 13 April to 00 UTC 14 April, whereafter it moved off 

to the northeast. Passage of a trough occurs during these times. Figures 27 (b) and 

(c) show that the high variance regions occur above the region of high horizontal 

wind speed. The high variance regions also occur above and underneath regions 

of maximum ACMES total vertical shear, not in regions of maximum total vertical 

shear. Also, the high variance does not occur just in low Brunt-Väisälä frequency 

squared regions. The high variance regions do not occur mostly in regions with 

the lowest buoyant Richardson number, where one would think there would be the 

greatest possibility of mechanical turbulence. But again looking at fine-scale radar 

data, Figure 29 shows the high log(C^) patch occurring above a region of high radar 

measured wind speeds. The high log(C2) patch corresponds exactly where there 

is high total vertical shear, Figure 29 (c), calculated from the radar measured wind 

speeds.    As with case study 1, C\ is likely higher in this region from mechanical 

48 



www.manaraa.com

-15.6 
-15.9 
-16.2 
-16.5 
-16.8 
-17.1 
-17.4 
-17.7 

y-,8.3 

1.9 
1.8 
1.6 
1.5 
1.4 
1.3 
1.1 
1 

HO.8 

V 

0.6 
0.2 
0 

28 

26 

24 

22 

20 

18 

■ma-, 6 

V 
14 

WSMR  log(C„), ACMES T 
UU.J TT 

(a) 

Figure 27 

WSMR  log(Tot.  Wind  Speed Var.),  ACMES  NT 

- 5T 

15Z 
13APR 
1996 

OOZ 
4APR 

ACMES  2-D  Wind  Speed, Total Vert.  Shear 
(c) 

~ U.UUÖ, 

OOZ 
14APR 

Case study 2 upper-level WSMR log(C£) and ACMES data, (a) High 
log(C^) occurs under the inversion. Temperature (°C) is contoured, 
(b) High log of total wind speed variance, shaded, occurs at the same 
heights and times as high log(C^). Brunt-Väisälä frequency squared 
(1/s2), countoured, is multiplied by 105. (c) Horizontal wind speed 
(m/s) is shaded. 
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Figure 28 Case study 2 WSMR log(C2) and ACMES log of potential refractivity 
squared, M2. High values of log(C^), shaded, occasionally occur in 
weak log(M2) regions, contoured, compared to lower log(C^) regions 
with higher log(M2). 
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turbulence, the source of which is turbulent kinetic energy available from strong 

vertical wind shears associated with the approach and departure of the polar jet. 

Gravity wave activity could also be a source of mechanical turbulence in this 

region where the high total variance of wind speed occurs. Gravity waves might be 

transporting energy from one region of the atmosphere to this region of high wind 

speed variance, increasing the amount of turbulent kinetic energy in the region, 

enhancing C\. Appendix C briefly shows how the transport of kinetic energy is 

related to turbulent kinetic energy production. 

Nastrom and Eaton (9:85) found WSMR radar wind speeds at 5.6 km corre- 

lated well with increased turbulence above the troposphere. They concluded that 

the increased turbulence seen was result of gravity wave activity in the troposphere 

associated with troughs. Different from their study, correlation coefficients between 

log(C^) at all heights and the ACMES horizontal wind speed only at 5.675 km are 

calculated and shown in Figure 30. Not much of a difference exists between the 

values in this figure and the correlation coefficients separately calculated between 

the zonal and meridional components and log(C^), which coefficients were always 

calculated at the same height. The approach of the polar jet around 00 UTC 14 

April 1996 and gravity wave activity might be a source of the mechanical turbulence 

seen underneath the stratospheric inversion. Figure 31 shows radar zonal wind 

speed averaged about 30 minute intervals near 12 km from 15 UTC 13 April 1996 to 

06 UTC 14 April 1996. The modulated speeds seen in the figure could be showing 

gravity waves within the curved, cyclonic flow of the jet. Gravity waves propagat- 

ing upward from this region might be transporting kinetic energy upwards, providing 

turbulent kinetic energy aloft where the variance of wind speeds is high, enhancing 

C\. These gravity waves might be internal gravity waves associated with the polar 

jet, or they might be externally forced waves originating at the surface as wind flows 

over terrain. Figure 32 shows 2-dimensional wind speeds, on a constant pressure 

surface, close to the surface at 00 UTC 14 April 1996.   The flow is strong and per- 
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Case study 2 fine-scale WSMR radar data, (a) Radar log(C^) data 
are averaged in 30 minute intervals every 3 minutes, (b) The band of 
high log(C^) resides atop a region of high radar measured wind speeds 
(m/s), (c) The band of high log(C^) is in a region of strong vertical 
shear.   White blocks are missing data that have been quality controlled. 
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Figure 30     Case study 2 correlation coefficients between WSMR log(C^) at each 
height and ACMES 2-D horizontal wind speeds only at 5.675 km. 

pendicular to the terrain, which is favorable for terrain-induced gravity waves.    A 

detailed description of gravity waves is covered in Appendix D. 

As with case study 1, values of log(P) are calculated from the ACMES and 

WSMR data. Figure 33 shows several features. A more uniform band of P values 

resides along the lower tropopause boundary between 9 km and 12 km. Values 

of P are typically greater than 1. Along the lower stratosphere boundary from 

11 April through 14 April 1996, values of P are also greater than 1. Before 11 

April, the vertical gradient of temperature is weak, making for a less well-defined 

stratospheric boundary. Perhaps this is why P values are lower before 11 April along 

the boundary. Between the two boundaries in the mid-tropopause, P is usually less 

than 1, outside of mechanically turbulent areas. The patch of high log(C^) on 00 

UTC 14 April 1996, centered at 15 km, has values of P much greater than 1. Again, 

mechanical turbulence and an increased amount of turbulent kinetic energy available 
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Figure 31 Case study 2 WSMR 30 min average zonal wind speed (m/s). Zonal 
wind speed measured every three minutes by the WSMR radar is aver- 
aged about 30 minute intervals. Wave patterns appear in the speeds 
underneath the region of maximum wind speeds for a depth of over 1 
km.   White blocks are missing data that have been quality controlled. 

54 



www.manaraa.com

0000 UTC 14 April 1996, 700 hPa 

V 

16 

15 

1 + 

13 

12 

11 

10 

9 

8 

7 

110W 109W 108W 107W 106W 105W 

Figure 32 Case study 2 ACMES 2-D wind speeds at 700 hPa. Wind speeds 
(m/s) are shaded. Streamlines of flow are thin dashed lines. Flow is 
perpendicular to the terrain near the WSMR radar, denoted by a white 
cross at 32°24'N, 106°21'W. Surface terrain (m) above mean sea level 
is contoured. The white block at 36°N is where the 700 hPa surface 
intersects the terrain. 
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Figure 33     Case study 2 calculated log(P).     Values of log(P) are calculated by 
subtracting ACMES log(M2) data from the WSMR log(C£) data. 

for cascade through the inertial subrange might make for higher values of P, and 

thus C\. 

5.2.4 Summary. Case study 2 occurs between the polar and subtropical 

jets. Patterns in several of the correlation coefficients occur which are most likely 

from association with the dynamics of the atmosphere and typical weather patterns, 

rather than simple, intrinsic relationships to C\. Other variables correlate in a 

similar fashion to case study 1. The log of potential refractivity squared correlates 

well at the lower tropopause boundary, but not so well in the mid-tropopause and 

lower stratosphere. 

The approach and departure of the polar jet and its associated strong vertical 

wind shears are a likely source of turbulent kinetic energy which increases C\ un- 

derneath the stratospheric inversion. Gravity wave activity might also be a source 

of turbulent kinetic energy, seen in the increased variance of radar measured wind 

speeds under the stratospheric inversion. Internal gravity waves in the curved, cy- 

clonic flow of the polar jet might be propagating kinetic energy upwards to where 
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the variance of wind speeds is high, enhancing C%.   Externally forced gravity waves 

originating at the surface might also be a source of mechanical turbulence, enhancing 

5.3    Case Study 3 

5.3.1 Overview. Synoptically this case study is similar to case study 2. 

The polar jet remains to the north of the WSMR radar during this case study, 

though it comes very close on 00 UTC 29 April 1996. The subtropical jet remains 

well to the south of WSMR, seen in Figures 34 and 35. 

The interesting features in the radar C\ data can be seen in Figure 36. Two 

banded C\ features appear at roughly 12 km and 17 km, just as with the other case 

studies. The upper band occurs near the stratospheric inversion, seen in Figure 37, 

while the lower band occurs at the lower tropopause boundary. A few patches of 

high log(C^) appear on 25 April and 28 April. The patch of high log(C^) on 25 

April is significant as it seems to be affecting the correlation of log(C^) with the 

log of potential refractivity squared in a way which is opposite to that seen in the 

previous two case studies. 

5.3.2 Upper Troposphere to Lower Tropopause. Unlike the positive cor- 

relation of log(C^) with the log of potential refractivity squared seen in the upper 

troposphere to lower tropopause in the first two case studies, the correlation coeffi- 

cients from 8 km to 10 km are negative, with a minimum value of about -0.4 at 9 

km, seen in Figure 38 (a). The high log(C^) on 25 April is centered at 9 km and 

this high log(C^) at this height is affecting the correlation coefficients to log(M2). 

Figure 39 (c) shows that log(C^) is high on 25 April and decreasing, but the log 

of potential refractivity is low and increasing. This affects the overall correlation 

between the two variables over the entire period at this height. High variance of 

radar measured wind speeds corresponds to this region of high log(C^).   Figures 40 
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Figure 34 Case study 3 NCEP/NCAR 200 hPa analysis. The polar jet core is 
denoted by solid line and the WSMR radar by dot. Geopotential height 
is in meters MSL and wind barbs are in meters per second. 
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Figure 35 Case study 3 NCEP/NCAR 200 hPa analysis. The polar jet core is 
denoted by solid line and the WSMR radar by dot. Geopotential height 
is in meters MSL and wind barbs are in meters per second. 
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30APR 

Figure 36 Case study 3 WSMR log(C^). Significant features in this case study 
are denoted by dashed line: the high log(C^) band at roughly 12 km, 
the upper band of high log(C^) at roughly 17 km, and the patches of 
high log(C^) appearing on 25 April and 28 April 1996. 

25APR 
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27APR        28APR 2 9 APR 30APR 

Figure 37     Case study 3 WSMR log(C^) and ACMES temperature (°C). The base 
of the stratospheric inversion is denoted by dashed line. 
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(a) and (b) show the general overlap of C\ and high total variance of wind speeds 

beneath 11 km from 03 UTC to 15 UTC on 25 April. The possibility of mechani- 

cal turbulence, seen in the high variance of radar measured wind speeds, is a likely 

reason for increased log(C^) seen at 9 km on 25 April, off-setting the correlation of 

log(C^) to the log of potential refractivity squared at this level. 

The high C„ and high variance of wind speeds on 25 April 1996 occurs in 

a region of sporadically high total vertical wind shear, calculated from the radar 

measured wind speeds, seen in Figure 40 (c) from 03 UTC to 15 UTC between 8 km 

and 10 km. The ACMES total vertical shear, seen in Figure 40 (b) for the same 

times and heights, shows lower total shear values. The actual shear observed by 

the radar might be a source of turbulent kinetic energy which is increasing C\ in the 

region. Another possible source of mechanical turbulence could be from the passage 

of a trough. 

From 00 UTC 25 April 1996 through 00 UTC 26 April, the polar jet core does 

approach and depart New Mexico, seen in Figure 34. However, the jet core does 

not come close to WSMR at all. With the approach and departure of the polar jet, 

a trough does pass through WSMR during this time. Possibly turbulent behavior 

associated with the passage of the trough during this time could account for the 

high variance of radar measured wind speeds and high C\ seen, as hypothesized by 

Nastrom and Eaton (9:86). It might be that the outer scale of turbulence changes, 

or the amount of kinetic energy available for cascade through the inertial subrange 

changes, during the passage of the trough, affecting the parameters P in C% = PM2. 

Patterns in the correlation coefficients between log(C^) and other variables can 

be seen in Figure 41. Wind speeds, temperatures, and specific humidity patterns are 

likely a result of realizations of the variables at constant heights being affected by the 

movement of the lower tropopause boundary and the differences of these variables 

from troposphere to tropopause values. This argument is the same as that used for 

the patterns seen in the other two case studies. 
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Figure 38 Case study 3 correlation coefficients of lag 0. Coefficients are computed 
at constant height between WSMR log(C^) and variables at top of each 
graph. 
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Figure 39 Case study 3 realizations of WSMR log(C2) and the log of potential 
refractivity squared, M2, at different heights, (a) through (d) show 
the relationship between the two variables at different heights and how 
those relationships affect correlation coefficients. log(C2) is denoted by 
white circles and log(M2) by black circles. 
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Figure 40 Case study 3 lower-level WSMR and ACMES data from 25 April to 
26 April 1996. (a) The logarithm of potential refractivity squared is 
contoured, (b) The logarithm of WSMR total wind speed variance, 
(m2/s2) is shaded. ACMES total vertical shear (1/s) is multiplied by 
104. (c) WSMR radar total vertical shear (1/s) is shaded. Brunt- 
Väisälä frequency squared (1/s2) is multiplied by 105. White blocks 
are missing data that have been quality controlled. 
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Figure 41 Case study 3 correlation coefficients of lag 0. Coefficients are computed 
at constant height between WSMR log(C^) and variables at top of each 
graph. 
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The high log(C^) seen from 27 April to 28 April between 8 km and 10 km is 

resolved into two patches in Figure 42. The high log(C^) seen from 03 UTC to 

15 UTC on 28 April corresponds to where the log of potential refractivity is high. 

However, the high log(C£) seen from 15 UTC to 21 UTC on 27 April does not 

correspond to regions of high potential refractivity, high variance of radar measured 

wind speeds, nor a pattern of high total vertical shear. Further, high total variance 

of radar measured wind speed at 00 UTC 28 April occurs during a lull in log(C^). 

This is inexplicable. Perhaps some assumptions within Tatarski's theory of C\\ such 

as specific humidity being conservative and passive, and no reflection of the radar's 

electromagnetic waves (11:40, 59-77); do not hold here. The other feature of interest 

for this case study also occurs at these times, but aloft between 15 km and 18 km. 

5.3.3 Mid-Tropopause to Lower Stratosphere. As noted earlier, the upper 

band of high log(C^) resides at the stratospheric inversion. The high log(C^) seen on 

28 April 1996 at the stratospheric inversion might be associated with the approach 

and departure of the polar jet, seen in Figures 34 and 35 from 00 UTC 28 April 1996 

to 12 UTC 29 April 1996. Between 00 UTC and 12 UTC 28 April, the polar jet 

becomes cyclonically curved. Figure 43 shows radar zonal wind speeds averaged in 

30 minute intervals and a modulated wave pattern appearing in the speeds. The 

modulation of speed could be from internal gravity waves in the cyclonic flow of the 

jet. Gravity waves might be propagating upwards from this region and providing 

a source of energy for mechanical turbulence aloft, enhancing C\. Figure 44 shows 

that the high log(C^) occurs in a motley of high potential refractivity, total wind 

speed variance, and total vertical shear (calculated from radar wind speeds). Any 

of these could be a source of high C% in this region. 

Values of P are shown in Figure 45. A band of P values greater than 1 follows 

the lower tropopause boundary. The lower stratosphere boundary can be seen in 

values of P close to 1 or greater than 1. From 25 April to 26 April 1996 between 8 

km and 10 km, very high values of P exist.   The passage of a trough during these 
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Figure 42 Case study 3 lower-level WSMR and ACMES data from 27 April to 
28 April 1996. (a) The logarithm of potential refractivity squared is 
contoured, (b) The logarithm of WSMR total wind speed variance, 
(m2/s2) is shaded. ACMES total vertical shear (1/s) is multiplied by 
104. (c) WSMR radar total vertical shear (1/s) is shaded. Brunt- 
Väisälä frequency squared (1/s2) is multiplied by 105. White blocks 
are missing data that have been quality controlled. 
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Figure 43 Case study 3 WSMR 30 min average zonal wind speed (m/s). Zonal 
wind speed measured every three minutes by the WSMR radar is aver- 
aged about 30 minute intervals. A wave pattern appears in the region of 
maximum wind speeds between 06 UTC 28 April and 15 UTC 28 April. 
White blocks are missing data that have been quality controlled. 
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Figure 44 Case study 3 upper-level WSMR and ACMES data from 28 April to 
29 April 1996. (a) The logarithm of potential refractivity squared is 
contoured, (b) The logarithm of WSMR total wind speed variance, 
(m2/s2) is shaded. ACMES total vertical shear (1/s) is multiplied by 
104. (c) WSMR radar total vertical shear (1/s) is shaded. Brunt- 
Väisälä frequency squared (1/s2) is multiplied by 105. White blocks 
are missing data that have been quality controlled. 
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Figure 45     Case study 3 calculated log(P).     Values of log(P) are calculated by 
subtracting ACMES log(M2) data from the WSMR log(C^) data. 

times and during 27 April to 28 April 1996 is likely associated with the higher values 

seen at these heights. 

5.3.4 Summary. This case study occurs south of the polar jet, but more 

north of the subtropical jet. The negative correlation of log(C^) to log(M2) from 

8 km to 10 km is explained by a patch of high log(C2) occurring on 25 April 1996; 

which is not accountable by potential refractivity alone, but by increased mechanical 

turbulence. Strong vertical shear during this time could be providing energy for the 

mechanically turbulent activity. Turbulent behavior associated with the passage of 

a trough at this time might also be a source for the mechanical turbulence and high 

C\ seen, changing the parameters P in C\ = PM2. 

Another patch of high log(C2) seen at these same heights on 27 April 1996 

can not be explained by potential refractivity, high variance of radar measured wind 

speeds, nor total vertical shear. However, a region of high log(C2) seen at the 

stratospheric inversion on 28 April during the approach of the polar jet can explained 

by various factors:   gravity wave activity providing a source of energy for turbulent 
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kinetic energy, high potential refractivity, high variance of radar measured wind 

speeds showing mechanical turbulence, and strong total vertical shear providing a 

source of turbulent kinetic energy. 
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VI   Conclusion 

6.1    Summary of Results 

In the analysis of this work, six meteorological features were found likely to 

affect C2. Two of the features are directly related to potential refractivity, M, and 

the other four are related to the various other parameters in C2, grouped into one 

called P. 

The two meteorological features associated with affecting potential refractivity, 

and thus C2, are jets and inversions. In the upper troposphere to lower tropopause, 

a good linear relationship exists between log(C2) and log(M2). The correlation is 

strong in the presence of a jet as vertical wind shear affects horizontal temperature 

gradients, which affect potential refractivity. This relationship between vertical 

wind shear and horizontal temperature gradients is due to the thermal wind rela- 

tionship, not turbulent kinetic energy from shear. At jet core level, higher values 

of C2 can be expected north, or on the lower pressure side, of the jet core where 

potential refractivity is greater from the increased static stability. South of jet core 

level, lower values of C2 can be expected. Farther away from a jet, the correlation 

between log(C2) and log(M2) is lower. Synoptic-scale dynamics plays a strong and 

predictable role in affecting C2 when a jet core is present in both time and space. 

The other meteorological feature which affects potential refractivity, and thus C2, is 

temperature inversions. Typically higher values of C2 can be found just above in- 

versions, in the warmer side, as a result of warmer temperatures increasing potential 

refractivity, resulting in higher C2. Cooler temperatures beneath inversions make 

for comparatively lower values of C2, assuming similar values of P in C2 = PM2. 

The remaining four meteorological features are related to effects on P, and 

thus C2. The first feature is the effect of strong vertical wind shear on P. Bands 

of high C2 occur within regions of strong vertical wind shear. During the approach 

of jets, very high wind shears are seen in the fine-scale radar data which correspond 
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almost exactly to the same location as the high C\ seen by the radar. The bands 

of high C\ cannot be accounted for by potential refractivity alone. It is likely that 

the strong vertical shear of wind is a source of turbulent kinetic energy, enhancing 

C\. The second feature is high C\ occasionally seen underneath inversions during 

the approach of jets that are associated with gravity waves. Gravity waves might 

be propagating kinetic energy into regions underneath inversions, providing turbu- 

lent kinetic energy and enhancing C\. The other two meteorological features are 

tropopause boundaries and trough passage. High values of P are seen along the 

lower and upper tropopause boundaries, and during trough passage. Values of P 

tend to be greater than 1 along the tropopause boundaries and during trough pas- 

sage. Between the two tropopause boundaries, values of P are typically less than 

1, except in mechanically turbulent regions where P tends to become much greater 

than one-by one or two orders of magnitude. Along these boundaries and during 

trough passage, perhaps the outer scale of turbulence changes, or the amount of 

kinetic energy available for cascade through the inertial subrange changes. Vertical 

temperature gradients alone do not account for the patterns seen. 

6.2   Remarks 

Before concluding with a recommendation for future research, first a few re- 

marks on modeling C\. 

Some regions of strong vertical wind shear seen in the WSMR radar data 

correspond to regions of high C\. It is discouraging to find that the ACMES data, 

with a grid resolution of about 11 km, do not always show regions of strong vertical 

shear that are seen with the radar data. It is important to note that models will not 

always be accurate. The theory behind the quantities being modeled might be very 

accurate, but initial data values entered into a model and the model output might 

not always be. 
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Also, theory states C2 is proportional to M2, the square of potential refractiv- 

ity. As potential refractivity is proportional to vertical temperature gradients and 

the Brunt-Väisälä frequency squared in dry environments, one would expect high 

C2 in high Brunt-Väisälä frequency environments. The intensity of turbulence in 

the index of refraction is proportional to N2 in dry environments. However, me- 

chanical turbulence is likely in regions of low buoyant Richardson number, where 
(Q     \   2 

— 1 .   For a given total wind shear, one would expect a greater proba- 
dzj 

bility of mechanical turbulence in low N2 regions.   As mechanical turbulence is the 

most likely reason for enhanced C2 seen, a conflict between the two turbulence types 

arises. The best manner for prediction of C2 resides in modifying the parameters P 

in C2 = PM2 to account for mechanical turbulence. Even this can lead to incon- 

sistencies between modeled values of C2 and actual values of C2 in the atmosphere, 

as the potential for mechanically turbulent activity does not imply the turbulence 

will occur. However, any model for C2 which does not account for mechanically 

turbulent activity, from strong vertical shear or possibly gravity wave activity, can 

produce huge inconsistencies between predicted values and actual C2 observed in the 

atmosphere. 

6.3   Recommendation for Future Research 

Rather than qualitatively describing regions where mechanically turbulent ac- 

tivity exists, enhancing C2, quantitatively parametrizing mechanically turbulent ac- 

tivity into the parameters P in C2 = PM2 would be most useful for modeling C2. 

Including an accurate parametrization of mechanical turbulence into C2 would be 

most useful to forecasters as an aid in forecasting optically turbulent regions of the 

atmosphere. 
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Appendix A.   Thermal Wind Relationship 

For winds in geostrophic balance in a hydrostatic environment, vertical gradi- 

ents of wind speed and horizontal gradients of temperature are related through the 

thermal wind relationship. 

Balance of the horizontal pressure gradient force with the Coriolis force on a 

rotating earth define the geostrophic wind. 

dy fU9 (A-l) 

d$ 
(A.2) 

Substituting the Ideal Gas Law p V   . 
RT 

into the hydrostatic equation yields 

RT\ 
dp 

(A.3) 

Differentiating geostrophic equation (A.l) with respect to pressure 

d_ 

dp dy -h^ 
d2$       ,dug 

= /-- dpdy        dp 

Assuming $ is continuous 

ö2$        „du a 
 = /—- 

dydp        dp 
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d_ 
dy dp 

= Ä 
J dp 

Substituting in equation (A.3) 

d_ 
dy (?), J dp 

Rd_ 
pdy (T)t 

= Ä 
J dp 

dy)p 

fpdUg 
R dp 

(A.4) 

Similarly for vg 

\dx) R dp 
(A.5) 

Equations (A.4) and (A.5) define the thermal wind relationship in differential 

form. 

A picture of the thermal wind relationship is shown in Figure 46. Near the core 

of a jet in the northern hemisphere, the lapse rate north of the core decreases. The 

potential temperature curves for this figure are shown in Figure 47. Higher static 

stability occurs north of the jet core. Assuming moisture and other parameters are 

the same at jet core level in the northern hemisphere, higher C\ would exist to the 

north of the core, and lower C\ to the south as C\ a M2 a 
'de_ 
dz 
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Figure 46     Appendix A thermal wind and temperature.  With vg = 0, ug comes out 
of the diagram and speed is denoted by concentric circles, with greater 

speeds in the center.    In region (a), -^- > 0 making I — j    > 0 (in 

the northern hemisphere).   The lapse rate decreases in region (b).   The 
shear of winds at (c) also decrease the lapse rate in region (d). 
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Figure 47 Appendix A thermal wind and potential temperature. With vg = 0, 
ug comes out of the diagram and speed is denoted by concentric circles, 
with greater speeds in the center. At jet core level in the northern hemi- 
sphere, the thermal wind relationship decreases static stability south of 
the jet (a) and increases it to the north (b). 
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Appendix B.   C\ and Temperature Inversions 

At an inversion in a dry, hydrostatic environment, C\ will be greater just above 

the inversion than below, assuming constant P in C\ = PM2. 

Starting with the definition of potential temperature and then differentiating 

with respect to height 

6 = T(^\ with 
R 

K = (B.l) 

9 \B\ - d 

d~z[6]-d~z 

dz      \p J   dz dz 
Po 

-mf^T^ m_   fp0\
KdT 

dz 

dz p)    dz +   Po VP
(K+1)

 / dz 

M = (poydT + Tp/-K\dp 
dz      \p J    dz ° \ppK) dz 

m = (pAK^L_>iL(poYdp 
dz      \p J    dz       p   \p)   dz 

(B-2) 
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In a hydrostatic environment, — = -pg.    Siibstituting into equation (B.2) 

yields 

dz      \p)   dz      P   \P J 

89      (poYdT + P9KT fPoy 
dz      \p J   dz        p     \p 

Substituting in the Ideal Gas Law, p = ——, yields 
HI 

89     (poYdT ,   {Jr)9KT fPoY 
dz     \pjdz p \p 

89 _(po\K8T     pgKT (po\K 

dz     \p)dz     pRT \p) 

w = (p°Y—+—(-^K 
dz      \P J   dz      R \P 

dz     \pj   \dz      R 

Substituting the definition of 9 (B.l) back into the above equation yields 

9±=
e-(?L + L\ (B.3) 

dz     T\dz     cj K     ' 
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dq 
Potential refractivity in a dry atmosphere, with g = 0 and —- = 0, is given by 

oz 

M = c?^ (B.4) 
■T9dz 

Substituting in equation (B.3) yields 

p 9 far   gs 

M=P(^ + L] (B.5) 
'T2 \dz     cp 

And so C\ given by 

Cl = PM2 

becomes 

2 

*-"(>*(% + i 

For the case of an inversion in a dry, hydrostatic atmosphere shown in Figure 

48 with ( — )      = 0, [ — |    < 0, ( -r— )     > 0 and assuming a constant P', the 
\dzJZm \dzjzi \dz)Zu 

lower C2 is given by 
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Figure 48     Appendix B lapse rate. 

Cl{zt) = P EL 
ITA 

u 

dT 
dz 

zi CP. 

(B.7) 

And the upper C% is given by 

C2
n{zu) = P 

P2{Zu) 
T*{zu) dzJzu        CP 

Gl{zu) = P$ 
u 

dT 
dz 

+^ (B.8) 

Taking the ratio of the two C\ yields 

Cl{zi) 
PM- dT 

dz 

C2
n(zu) P>PI ( dT 

dz 

\ 2 

zu        CP/ 

81 



www.manaraa.com

EL 

dT 

dz 

dT 
dz 

+ — 
zu        CP' 

Cl{z{) 
C2

n{zu) 
EL 

,Pu 

dT 
dz 

2 

zi           CP 

dT 
dz 

dT 
dz 

2 

+ 2— 
Zu              CP 

dT 
dz 

+ * 

Zu 

(B.9) 

Close to the inversion with I — 1 « 1, and 
<9z 

Zi 
<9z 

the denominator 

will be larger than the numerator.    Therefore, C\ in the upper level will be larger 

than Ci in the lower level. 
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Appendix C.   Turbulent Kinetic Energy Equation 

The information in this appendix comes directly from P. K. Kundu's Fluid 

Mechanics (7:435-438). The purpose of this appendix is to briefly describe the terms 

in the turbulent kinetic energy (TKE) equation, as they are useful in describing the 

kinetic energy budget of fluid flows. As the derivation of the equation is involved, 

it is not covered. 

The TKE equation is expressed in tensor notation 

transport shear prod 
Y)         d   (\   \     dU-    bu°yant Prod    viscous diss 
_(^ =       — ■ "   "—  — 

  Q       (   \   \  dUi tm°yam Pr°a VISCOUS   diSi 
if) = -— ( — pv~ + \ufuj - 2uu~e~~   - WÄj-^-1 +   gotwT'    -  2ueijeij 

oxj \p0 J OXj 

(C.l) 

where v is kinematic viscosity, a is the thermal expansion coefficient, and e^ is the 

fluctuating strain rate. More on these terms can be referenced in Kundu's book. 

Components of velocity are written in terms of a mean Ui and a fluctuating part 

Ui. Temperature is expressed as a sum of a mean and fluctuating part, T + T' 

respectively, as is pressure, P + p.   Averaged quantities are time averages. 

The transport terms of the TKE equation represent the spatial transport of 

TKE.   The shear production term represents the rate of TKE generation from the 
dUi 

interaction between Reynolds stress, ü^ttj, and the mean shear of the fluid, ——. 
OXj 

The fifth term of the equation represents buoyant production or loss of TKE. The 

remaining term is the viscous dissipation term and is not negligible in the TKE 

budget of fluid flows. 
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Appendix D.   Gravity Waves 

The goal of this appendix is to show what gravity waves are and how they 

propagate. The equations which define gravity waves are covered first; then after 

describing the solutions to the equations with a dispersion relation, it is shown how 

they propagate. 

D.l    Governing Equations 

The equation of motion and the continuity equation are the two governing 

equations which are used to describe gravity waves here. These equations are 

defined first, simplified by the method of perturbations, and then combined so that 

solutions can be found in the next section. 

D.l.l Definitions. For a material volume element of the atmosphere on 

a rotating planet, the sum of surface and body forces acting on the element define 

the equation of motion. The forces acting on the element are the pressure gradient 

force, the Coriolis force, the gravitational force, and a frictional force. For simplicity, 

curvature of flow is not considered. 

net P.G.F. „    . ,. ,   .  .. 
J^r> JUT Coriohs gravity       faction 

M—= --Vp-2MOxV+Mt+   FF (D.l) 
at p 

Considering time scales less than the period of rotation of the planet, and no 

frictional forces (which is a fair assumption above the planetary boundary layer), 

the equation of motion reduces to 

net P.G.F. 
d~V* M gravity 

M^iL = _^.Vp+M^ (D.2) 
at p 
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Conservation of mass in the atmosphere is expressed in the continuity equation. 

For a moving element, a change in mass with respect to time is equal to the amount 

of mass leaving or entering the element.   Loss is from divergence. 

-f - »v ■ * <D-3) 
or 

-£ + pV • If = 0 (D.4) 

D.I.2 Method of Perturbations. Equations (D.2) and (D.4) are simplified 

by the method of perturbations. This simplification converts the two equations 

into linear differential equations, which are more easily managed. Assumptions 

are that quantities can be expressed as a sum of a mean and a perturbation. The 

perturbation is small compared to the mean; consequently, products of perturbations 

are small compared to other terms in equations and are dropped. The linearization 

of the equations depends upon this. Separately, both the mean and the perturbation 

parts are solutions to the governing equations. 

For gravity wave solutions, other assumptions are made to simplify the equa- 

tions. The first assumptions are that the mean quantities are steady-state and 

horizontally homogeneous. Another assumption is that elements as a whole are in- 

compressible, that is — = 0. The last important assumption is that the mean flow 

speed is zero. This assumption not only simplifies the equations, but also allows for 

easier comparison of the solution to the mean flow. 

Looking first at the zonal component of wind in equation (D.2) and assuming 

u = u + u', p = p + p', and p = p + p' 
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(P+„')![«+«']=-! [p + p'] 

du      ,dü~       du'       ,du' dp     dp' 
dx     dx 

( du     dp\       tdü       du'       ,du'        dp' 
{Ptt+dx^)+PH + PlI + P^ = -te 

Since the mean u is a solution to the original equation 

,dü~       du'       .du' dp' 
dx 

Since mean wind speed is zero 

,         du'       . du' 

fdu'    _,  „ ,\      , (du' 

dp' 
dx 

(du' 
~pXm + ~v ■ Vu' + 7 ■ V«' J + p' ( -^- + if • Vu' + 7 • w 

)= 
dp' 
dx 

Again , the mean wind is zero 

p(^ + o + 7.w)+p<(f + o + 7.vM<)=- dp' 
dx 

p 
(du'     —f   „ A       . (du'       .du'       .du'        ,du'\ 

= — 
dp' 
dx 

86 



www.manaraa.com

/du'    -f  „ ,\      ,du'      , ,9u'      , ,du' ,   ,  ,du'        dp' 

Since products of perturbations are small compared to other terms 

(du'     -t  „ A       ,dv!       du'       du'       du'        dp' 

du'      -f  „ .      .du'        dp' 

_du'    _ ,du'    _ .du'     _  .du'       .du'        dp' 

Scale analysis shows products of perturbation quantities and derivatives of 

perturbation quantities are much smaller than other terms.   Therefore 

du' „    „        dp' 
p— + pO + pO + pO + 0 = —g- 

du'        1 dp1 

dt ~p dx 

Similarly for the other two components of velocity 

dv' 1 dp' 
dt ~p dy 

(D.5) 

(D.6) 

dw'        I dp1     pi . 
~KT = ~=^~ ~ -9 D-7) dt p dz      p 
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Since elements are assumed to be incompressible, the continuity equation (D.4) 

becomes 

0 + pV • If = 0 

(du     dv     dw\ 
\dx     dy     dz J 

'du     dv     dw\ 
^dx     dy     dz J 

'|[s+u1 + |p+„1 + ||TO+^=o 

(du     du'\      (dv     dv'\      (dw     dwr. _ 
\dx     dx J     \dy     dy J     \dz      dz 

du     dv     dw\      (du'     dv'     dw'\  1 1 + 1 1 ] = o 
dx     dy     dz J      \ dx      dy      dz 

,      ^      ,'du'     dv'     dw'\ _ 
^ '     \ dx      dy      dz ' 

And since the mean v is a solution to the original equation pV ■ if = 0 

D.I.3    Combination.      Now that the equation of motion (D.5) through (D.7) 

and continuity equation (D.8) are linearized from applying the method of perturba- 
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tions, they are combined to make equations in w' and p', for which wave solutions 

can be assumed in the next section. First, the continuity equation is differentiated 

with respect to time, so that the zonal and meridional components of velocity can 

be substituted in 

d_ 
dt 

du'     dv'     dw' 
dx      dy      dz -|m 

d2u'      d2v + 
dtdx     dtdy     dtdz 

Assuming that the perturbations are continuous, 

d2u'      d2v'      d'"w + <2w'      n 

dxdt     dydt     dzdt 

Substituting in the zonal (D.5) and meridional (D.6) components of velocity, 

d_ 
dx 

ld£ 
~p dx 

d_ 

dy -pdy 

d2w'     n 
+ d^t-° 

ld2p'     ld2p'     d2w'     n 
+ TT-^7  = 0 

p dx2     p dy dzdt 

d2p'     d2p'     _d2w' 
dx2      dy2        dzdt 

(D.9) 

Equation (D.9) is the first equation expressing gravity wave solutions.    The 

last equation begins with the assumption that the elements are incompressible 

dp 
~di 

= 0 
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dp     dp       .   — 

^-[-p + p'} + ^.v[-p + p'} + 7 ■v[p + p'] = o 

Since the mean pressure is steady-state and the mean wind is zero 

0 + ^ + 0-V[p + p'} + 7-V[-p + p'}=0 

^ + 7-V[p + p'] = 0 

ot 

Since the mean pressure is horizontally homogeneous 

ot oz 

Scale analysis shows products of perturbation quantities and derivatives of 

perturbation quantities are much smaller than other terms.   Therefore 

dP'  i     '^.n     n —- + W — + 0 = 0 
ot oz 

ot oz 
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Taking the vertical component of motion (D.7) and differentiating with respect 

to time 

a 
dt 

dw' 

. dt 

a 
~ at 

l dp'     p' ' 
■-^--—9 p az    p 

d2w' _    1 d2p'      gdp' 
at2      "patdz   ~p at 

Substituting equation (D.10) in yields 

d2w' 
~aW 

i ay ■2„V 

patdz 
 — w 

,ar 
dz. 

d2w'        .gdp     1 d2p' 
p dz     p dtdz 

A simplification can be made to the above equation.   As the mean density is 

steady-state, the quantity ——— is a constant.   This quantity is the Brunt-Väisälä 
pdz 

frequency squared for the mean portion of the fluid. 

N2 = -9Jl 
pdz 

(D.12) 

Substitution into equation (D.ll) yields 

d2w'      Ar2   ,     1 d2p' 
at1 p ataz 

(D.13) 

Equations (D.9) and (D.13) are a system of equations in two unknowns w' and 

p'.   The next section assumes wave-like solutions to the two equations. 
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D.2   Solutions of Equations 

Solutions to equations (D.9) and (D.13) are internal gravity waves. Wave- 

like solutions are assumed for w' and p' in order to find a dispersion relation for 

the frequency of the wave solutions. Finding a dispersion relation is useful for 

describing how gravity waves propagate.    Plane wave solutions of the form ijj' = 

\&exp (A • T* - ut]   are assumed; where ^ is a constant amplitude, K = (k, I, m) 

is the wavenumber, and u is the constant frequency.   Solutions of the form 

w' = Wexp i (K • J* — ut) (D.14) 

and 

p' = P exp  i ( K ■ T* — ut) (D.15) 

are assumed. 

To find the dispersion relation, equations (D.14) and (D.15) are first substituted 

into equation (D.13) 

8P_ 

dt2 W exp It ■ "f* -ut + N2Wexp (l£ ■-?- ut) 

+- l d2 

pdtdz 
Pexp (l? ■ T* - ut) = 0 

{-iuf W exp if!?-!*- ut)   + N2W exp i (it ■ ^r> - ut) 

+— {—iu) (im) P exp  i f K ■ ~r* — utI 
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(-iuy W + N2W + - (-iu) (im) P = 0 

-co2W + N2W + ^ = 0 

W{N2_UJ2) + P^ = 0 

w = -__,^m  „P 
-p(N2-u2)' 

(D.16) 

Next, the assumed solutions are substituted into equation (D.9) 

dx2 Pexp i(lt ■ T* -ut\ + 
dy2 Pexp i (it ■ T* - cot) 

dzdt 
Wexp i f K r — tut 

(ik)  Pexp (it • "f* -cat)   + (ilf Pexp  i (it ■ T* - vt\ 

= p (im) (—VJJ) W exp i ( K • T* — cut j 
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{iky P + (ily P=-ß(im) {-ico) W 

-p (k2 + I2) = -pmuoW 

p-lf^w <D'17> 
Substituting equation (D.16) into (D.17) yields 

p =       prnto     f um       p 

(k2 + l2) V   -p{N2-u2)' 

P~p(N2-u2) ~pmu) 
P       urn {k2 +12) 

(N2 _ u
2) = 

9     9 mzu' 
(k2 +12) 

(N2-cu2)(k2 + l2)=mW 

N2 (k2 + I2) - u2 (k2 + I2) - mW = 0 

N2 (k2 + l2) -u2 [k2 + l2 + m2) =0 
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2 = N2       jk2 + l2) (D lg) 

Equation (D.18) is the dispersion relation for gravity waves. For a wavenumber 

it = (0,0, m), the frequency of the waves with respect to the mean wind is zero and 

thus there are no gravity waves. Therefore, phase propagation of gravity waves is 

not solely in the vertical, but at an angle to the vertical. This makes sense as the 

restoring force of gravity acts in the vertical and waves cannot oscillate solely in the 

horizontal.   More on the propagation of gravity waves is covered in the next section. 

D. 3    Propagation 

Gravity waves move in three different ways: by perturbation velocities, by 

phase velocities, and by group velocities. An unusual feature of gravity waves is 

that phase velocities are perpendicular to group velocities. For example, as plane 

waves propagate downwards, the group envelope of waves will propagate upwards, 

perpendicular to the phase velocities. Proof that phase velocities and group ve- 

locities are perpendicular comes by simply taking the inner product of the two and 

demonstrating that the result is zero, for the non-trivial case. 

The phase velocity of gravity waves is given by 

(D.19) 

and the group velocity is given by 

*=!'£,£.£'] (D.20) 9      V dk' dl ' dm 
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Substituting the dispersion relation (D.18) into the definitions for phase and 

group velocities yields 

*=(!^*,»,!21^) (D.21) 
K3      '    K3     '    K3 

and 

*"U3^   '^H K3    m) {D-22) c„ = 

where 

KH = ^/W+P (D.23) 

Performing the inner product on the phase and group velocities yields 

(\N\KH     \N\KH    \N\KH    \    (\N\m2     \N\ri   JJMä.^ 
V

P ■ c9 ~ [—K3~k>    K3    <>    Ks    m)    \K
3KH>K3KH>       K3 

\N\KHl\ (\N\m\\  ,  (\N\KHl\ f\N\m\\  ,  f\N\KH\ f   \N\KH ^ ^m-M^^¥^ 

_^   _      N2m2
l2     N2m\2     N2K2

H    2 

N2 m 
VP '  C9 ^-6 (k2 + l2- K%) 
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Substituting in the definition of KH from equation (D.23) shows 

^ = ^?(fc2+'M*2 + '2)) 

N2m2 
 .  . iV      lit,        ,     . 

v; ■ c£ = 0 (D.24) 

Therefore, phase velocities are perpendicular to group velocities. From the 

vertical components of equations (D.21) and (D.22) it can be seen that phase ve- 

locities and group velocities have the same magnitude in the vertical, but opposite 

sign. 
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